绝缘材料:热缩套管、电容薄膜、高压套管、绝缘纸、绝缘鞋、绝缘橡胶手套、PCB线路板等。
对于气体击穿的实验现象和规律,用上一节所介绍的气体放电的发展过程可以解释,但是由于气体放电理论还不完善,因此并不能对击穿电压进行精确的计算。所以在实际的工程式应用中,比较普遍的是通过参照一些典型电极的击穿电压来选择绝缘距离,或者根据实际电极布置情况,通过实验来确定击穿电压。
空气间隙放电电压主要受到电场情况、电压形式以及大气条件的影响。本节主要讨论在不同条件下空气间隙放电电压的一些规律。
气体间隙的击穿电压与外施电压的种类有关。直流与工频电压均为持续作用的电压,这类电压随时间的变化率很小,在放电发展所需的时间范围内(以微秒计)可以认为外施电压没什么变化,因此统称为稳态电压,以区别于作用时间很短的雷电冲击电压(模拟大气过电压)和操作冲击电压(模拟操作过电压)。而冲击电压(雷电冲击、操作冲击)则持续时间极短,以微秒计,放电发展所需的时间不能忽略,间隙的击穿因而也具有新的特点,电场不均匀时,尤为明显。