为了提高电网的功率因数,减少干扰,平板电视的大多数电源都采用了有源PFC电路,尽管电路的具体形式繁多,不尽相同,工作模式也不一样(CCM电流连续型、DCM不连续型、BCM临界型),但基本的结构大同小异,都是采用BOOST升压拓扑结构。如下图所示,这是一典型的升压开关电源,基本的思想就是把整流电路和大滤波电容分割,通过控制PFC开-关管的导通使输入电流能跟踪输入电压的变化,获得理想的功率因数,减少电磁干扰EMI和稳定开关电源中开关管的工作电压。
下图是一个广泛应用的升压型开关电源拓扑,相信大家并不陌生。在这个电路中,PFC电感L在MOS开关管Q导通时储存能量,在开关管截止时,电感L上感应出右正左负的电压,将导通时储存的能量通过升压二极管D1对大的滤波电容充电,输出能量。Boost升压PFC电感L上都并连着一个二极管D2。
说法一:减少浪涌电压对电容的冲击在开机瞬间限制PFC电感L因浪涌电流产生巨大的自感电势,从而造成电路故障。每次电源开关接通瞬间加到电感上的可以是交流正弦波的任意瞬时值,如果在电源开关接通的瞬间是在正弦波的最大值峰点附近,那么给电感所加的是一个突变的电压,会引起电感L上产生极大的自感电势,该电势是所加电压的两倍以上,并形成较大的电流对后面的电容充电,轻则引起输入电路的保险丝熔断,重则引起滤波电容及斩波开关管Q击穿。设置保护二极管D2后在接通电源的瞬间,由D2导通并对C充电,使流过PFC电感L的电流大大减小,产生的自感电势也要小得多,对滤波电容和开关管的危害及保险丝的熔断可能要小得多。说法二:减少浪涌电压对升压二极管的冲击该二极管分流一部分PFC电感和升压二极管支路的电流,因而能对升压二极管起保护作用。以上的观点都提到了该二极管D2的保护作用,都有一定的道理,但上述的有些解释有值得商榷的地方。大家知道PFC电路后面大的储能滤波电容C和PFC电感L是串联的,由于电感L上的电流不能突变.PFC电感本身对大的滤波电容C的浪涌电流起限制作用,不会出现观点一提到的“电源开关接通的瞬间电感L1上产生极大的自感电势时电容的充电的情况,”因为自感电势的方向也是左正右负,此观点令人费解。并联保护分流二极管D2以后,这一路由于没有电感的限制作用,对滤波电容的冲击反而会更大,不会减小。实践也证明,去掉二极管D2后,电容C上的浪涌冲击反而减小。观点二保护升压管D1说法,有一定的道理,因为D1是快速恢复二极管,承受浪涌电流的能力较弱,减小反向恢复电流和提高浪涌电压承载力是相互牵制的,而D1所采用的普通整流二极管承受浪涌电流的能力很强,如1N5407的额定电流3A,浪涌电流可达200A。不过由于升压二极管D1有串接的PFC电感L的限流作用,笔者认为保护二极管D2的最主要作用还不仅仅是保护升压管D1。一些资料也有说明并联二极管D2是减少开机过程的浪涌电压,这个总体的说法没错,但我认为该保护二极管D2表面降低的是对PFC电感和升压二极管的浪涌冲击,但实际上还有一个重要的作用:保护PFC开关管。在开机的瞬间,滤波电容的电压尚未建立,由于要对大电容充电,通过PFC电感的电流相对比较大,有可能在电源开关接通的瞬间是在正弦波的最大值,在对电容充电的过程中PFC电感L有可能会出现磁饱和的情况,如果此时PFC电路工作,就麻烦了,流过PFC开关管的电流就会失去限制,烧坏开关管。为防止悲剧发生,一种方法是对PFC电路的工作时序加以控制,即当对大电容的充电完成以后,再启动PFC电路;另一种比较简单的办法就是并接在PFC线圈和升压二极管上一个旁路二极管,启动瞬间给大电容的充电提供另一个支路,防止大电流流过PFC线圈造成饱和,避免PFC电路工作瞬间造成开关管过流,保护开关管,同时该保护二极管D2也分流了升压二极管D1上的电流,保护了升压二极管。另外,D2的加入使得对大电容充电过程加快,其上的电压及时建立,也能使PFC电路的电压反馈环路及时工作,减小开机时PFC开关管的导通时间,使PFC电路尽快正常工作。综上所述,以上电路中二极管D2的作用是在开机瞬间或负载短路、PFC输出电压低于输入电压的非正常状况下给电容提供充电路径,防止PFC电感磁饱和对PFCMOS管造成的危险,同时也减轻了PFC电感和升压二极管的负担,起到保护作用。该二极管的作用仍然可以说是减少浪涌电压的冲击,但主要是为了减少浪涌电压对开关管造成的威胁,对升压二极管也有分流保护作用,而不是保护滤波电容的。在开机正常工作以后,由于D2右面为B+PFC输出电压,电压比左面高,D2呈反偏截止状态,对电路的工作没有影响,D2可选用可承受较大浪涌电流的普通大电流的整流二极管。在有些电源中,PFC后面的电容容量不大,也有的没有接入保护二极管D2,但如果PFC后面是使用大容量的滤波电容,此二极管是不能减少的,对电路的安全性有着重要的意义。
MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox新工具箱简化 NXP 处理器上的电池管理系统设计、测试和 ...
意法半导体先进的电隔离栅极驱动器 STGAP3S为 IGBT 和 SiC MOSFET 提供灵活的保护功能
面向空调、家电和工厂自动化等工业电机驱动装置和充电站、储能系统、电源等能源应用的功率控制2024 年 11月 13 日,中国——意法半导体 ...
11月13日消息,日前,太蓝新能源携手长安汽车共同宣布了一项重大技术突破无隔膜固态锂电池技术的发布。太蓝通过颠覆性创新实现无隔膜固 ...
东芝推出具有低导通电阻和高可靠性的适用于车载牵引逆变器的最新款1200 V SiC MOSFET
中国上海,2024年11月12日——东芝电子元件及存储装置株式会社(“东芝”)今日宣布,最新开发出一款用于车载牵引逆变器[1]的裸片[2]1200 ...
氧化镓(Ga2O3)探测器是一种基于超宽禁带半导体材料的光电探测器,主要用于日盲紫外光的探测。其独特的物理化学特性使其在多个应用领域中 ...
采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
艾迈斯欧司朗发布OSCONIQ® C 3030 LED:打造未来户外及体育场照明新标杆
TCR5SB28U、200mA、2.8V输出电压CMOS低压降稳压器的典型应用
具有 12V VDD 输入的 LTC2945HUD-1 3.3V 输入电源监视器的典型应用
EVAL-AD7946CBZ,用于 AD7946、14 位、500 Ksps PulSAR 模数转换器的评估板
LT8304IS8E -18V 至 -80Vin、-12Vout 负降压转换器的典型应用电路
豪威集团和Tobii在眼动追踪领域携手推进Metaverse视觉解决方案
Microchip借助NVIDIA Holoscan平台加速实时边缘AI部署
品英Pickering公司推出新款面向未来的PXIe单槽控制器, 适用于高性能测试和测量应用
秋风送爽,你来答题我送礼!看Maxim 深入浅出低功耗处理器视频精彩为您呈现!
有奖直播:如何利用瑞萨电子的GreenPAK平台优化混合信号电路设计
Keysight 有奖直播 基于数字孪生的软件工具,助力射频子系统验证
TI 嵌入式处理主题直播月|报名观看直播赢好礼【低功耗WiFi MCU、Sitara AM57X平台、机器学习】
福禄克首款热成像万用表Fluke-279FC等你来尝鲜!晒心得享好礼喽!
站点相关:分立器件转换器稳压稳流数字电源驱动电源模块电池管理其他技术宽禁带半导体LED网络通信消费电子电源设计测试与保护逆变器控制器变压器电源百科电源习题与教程